3D printing & more

Additive Manufacturing (AM) is an appropriate name to describe the technologies that build 3D objects by adding layer-upon-layer of material, whether the material is plastic, metal, concrete or other materials.

Common to AM technologies is the use of a computer, 3D modeling software (Computer Aided Design or CAD), machine equipment and layering material. Once a CAD sketch is produced, the AM equipment reads in data from the CAD file and lays downs or adds successive layers of liquid, powder, sheet material or other, in a layer-upon-layer fashion to fabricate a 3D object.

The term AM encompasses many technologies including subsets like 3D Printing, Rapid Prototyping (RP), Direct Digital Manufacturing (DDM), layered manufacturing and additive fabrication.

AM application is limitless. Early use of AM in the form of Rapid Prototyping focused on preproduction visualization models. More recently, AM is being used to fabricate end-use products in aircraft, dental restorations, medical implants, automobiles, and even fashion products.

While the adding of layer-upon-layer approach is simple, there are many applications of AM technology with degrees of sophistication to meet diverse needs including:

  • Visualization tool in design
  • Create highly customized products for consumers and professionals alike
  • Industrial tooling
  • Produce small lots of production parts

Conventional manufacturing techniques are capable of producing a great range of shapes and designs but additive manufacturing takes production to the next level.

One of the greatest benefits of this more modern technology is the greater range of shapes which can be produced. Designs that can’t be manufactured in one entire piece with traditional means can easily be achieved. For example, shapes with a scooped out or hollow centre can be produced as a single piece, without the need to weld or attach individual components together. This has the advantage of being stronger; no weak spots which can be compromised or stressed.

The additive manufacturing process is very quick too, rather than needing an endless round of meetings from engineers in order to be able to tweak designs. With the assistance of the CAD software, making any changes takes simply the click of the mouse. Rapid prototyping in particular is very quick, with full models produced quite literally overnight in some cases. This provides companies with far more flexibility, and also has the result of slashing costs too.

In the past, the limitations of production have all too often influenced design, ruling out ideas because they weren’t practically achievable. The introduction of this technology and its development means the process has been spun on its head, with design now driving the production.